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A B S T R A C T

Stability analysis is an essential aspect of studying the generalization ability of deep learning, as it involves
deriving generalization bounds for stochastic gradient descent-based training algorithms. Adversarial training
is the most widely used defense against adversarial attacks. However, previous generalization bounds for
adversarial training have not included information regarding data distribution. In this paper, we fill this gap by
providing generalization bounds for stochastic gradient descent-based adversarial training that incorporate data
distribution information. We utilize the concepts of on-average stability and high-order approximate Lipschitz
conditions to examine how changes in data distribution and adversarial budget can affect robust generalization
gaps. Our derived generalization bounds for both convex and non-convex losses are at least as good as the
uniform stability-based counterparts which do not include data distribution information. Furthermore, our
findings demonstrate how distribution shifts from data poisoning attacks can impact robust generalization.
1. Introduction

Deep learning models acquire knowledge from training data and
generalize to unseen data. Generalization plays a key role in successful
machine learning algorithms. On the other hand, a neural network
can easily be fooled by adversarial examples (Goodfellow, Shlens, &
Szegedy, 2014; Szegedy, Zaremba, Sutskever, Bruna, Erhan, Goodfel-
low, & Fergus, 2013). Although adversarial training (Madry, Makelov,
Schmidt, Tsipras, & Vladu, 2017) can largely alleviate the adversarial
vulnerability of networks, the corresponding robust generalization is
more difficult and robust overfitting (Rice, Wong, & Kolter, 2020)
harms the robust performance to a very large degree. To understand
the generalization ability of adversarial training, an important research
direction is to give a theoretical analysis of its generalization bound,
i.e., the difference between adversarial population risk and adversarial
empirical risk (see Section 3.1).

Stability analysis is a main methodology for obtaining algorithm-
dependent generalization bounds (Bousquet & Elisseeff, 2002; Shalev-
Shwartz, Shamir, Srebro, & Sridharan, 2010). In standard training, the
uniform stability of stochastic gradient descent (SGD) for deep learning
was established (Bassily, Feldman, Guzmán, & Talwar, 2020; Hardt,
Recht, & Singer, 2016). In Kuzborskij and Lampert (2018), on-average
stability is used to provide data-dependent generalization bounds for
standard training. The uniform stability of adversarial training was
presented in Farnia and Ozdaglar (2021) assuming the inner maximiza-
tion problem is strongly concave and in Xing, Song, and Cheng (2021)
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for non-smooth losses. Under the 𝜂-approximate 𝛽-gradient Lipschitz
assumption, generalization bounds for SGD in adversarial training were
derived (Xiao, Fan, Sun, Wang, & Luo, 2022).

It is generally believed that the difficulty of robust generalization
involves three aspects, including model capacity, training algorithm,
and data distribution. The capacity of a strictly robust classifier on a
well-separated distribution should be exponential in the data dimen-
sion (Li, Jin, Zhong, Hopcroft, & Wang, 2022). The previous general-
ization bounds based on uniform stability analyses (Xiao et al., 2022;
Xing et al., 2021) of adversarial training algorithms did not contain
information about data distribution.

In this paper, we provide on-average stability analysis (see
Definition 1) of SGD-based adversarial training and derive data-
dependent generalization bounds to illustrate robust generalization,
that is, the generalization bounds contain information of the data
distribution. For convex adversarial losses (see Section 4.3), assuming
that the losses are Lipschitz and approximately gradient Lipschitz, we
give a generalization bound dependent on the adversarial population
risk at the initialization point and the variance of stochastic gradients
over the distribution. Assuming the losses are approximately Hessian
Lipschitz in addition, we provide a generalization bound for the non-
convex adversarial losses (see Section 4.4). Besides the variance of
stochastic gradients over the distribution, this bound depends on the
curvature (the norm of the Hessian matrix) at the initialization point
and the population risk at the output parameters. Our bounds grow
https://doi.org/10.1016/j.neunet.2024.106983
Received 29 February 2024; Received in revised form 10 September 2024; Accepte
vailable online 4 December 2024 
893-6080/© 2024 Elsevier Ltd. All rights are reserved, including those for text and 
d 26 November 2024

data mining, AI training, and similar technologies. 

https://www.elsevier.com/locate/neunet
https://www.elsevier.com/locate/neunet
mailto:xgao@mmrc.iss.ac.cn
https://doi.org/10.1016/j.neunet.2024.106983
https://doi.org/10.1016/j.neunet.2024.106983


Y. Wang et al.

a

n

a

h

X

c
t
d

t
g
G
n
n

i

l

i
s

t
t
m
b

a
p

i
t

l
t
c

i

r

n
t

n
𝑧

Neural Networks 183 (2025) 106983 
with the adversarial training budget and cover the standard training
setting when the budget becomes zero. Our bounds for both convex
nd non-convex losses are no worse than the uniform stability-based

counterparts but capture the information about the data distribution
and the initialization point.

An additional advantage of our generalization bound over the pre-
vious ones is that it describes the effects of distribution shifts caused
by data poisoning attacks and hence interprets the shrinkage of gener-
alization gaps in adversarial training under stability attacks since the
poisoned distributions can reduce the adversarial population risk over
the poisoned data.

The rest of the paper is organized as follows. In Section 3, we
revisit the relationship between stability and robust generalization for
adversarial training. In Section 4, we provide our main results. In
Section 5, we present experimental results to verify the theoretical
results.

2. Related work

Robust Generalization. Machine learning models are highly vul-
erable to adversarial examples (Biggio, Corona, Maiorca, Nelson,

Šrndić, Laskov, Giacinto, & Roli, 2013; Moosavi-Dezfooli, Fawzi, &
Frossard, 2016; Nguyen, Yosinski, & Clune, 2015; Szegedy et al., 2013),
where crafted and imperceptible perturbations to input data can easily
fool a well-trained classifier. A widely adopted illustration attributes
adversarial examples to the presence of non-robust features (Ilyas et al.,
2019). Among the numerous defenses proposed against adversarial
ttacks, adversarial training (Goodfellow et al., 2014; Madry et al.,

2017; Shaham, Yamada, & Negahban, 2015) has become a major
approach to training a robust deep neural network and can achieve
optimal robust accuracy if certain loss functions are used (Gao, Liu, &
Yu, 2022).

Generalization in adversarial training is much more tricky than that
in standard training and requires more data and larger models (Gowal
et al., 2021; Li et al., 2022; Schmidt, Santurkar, Tsipras, Talwar, &
Madry, 2018; Wang et al., 2023). The robust overfitting phenomenon
arms the robustness in a long training procedure (Rice et al., 2020). In

recent years, different methods have been proposed to alleviate robust
overfitting (Chen, Liu, et al., 2020; Chen, Zhang, Liu, Chang, & Wang,
2020; Chen, Zhang, Wang, Balachandra, Ma, Wang, & Wang, 2022; Wu,

ia, & Wang, 2020; Yu & Gao, 2023; Yu, Han, et al., 2022) .
Algorithmic Stability. Modern stability analysis goes back to the

work (Bousquet & Elisseeff, 2002). Stability notations fall into two
categories: data-free and data-dependent ones. The first category is
usually called uniform stability. Generalization bounds of SGD were
first given using uniform stability under Lipschitz and smoothness
conditions (Hardt et al., 2016), which was extended to the non-smooth
onvex case (Bassily et al., 2020). The uniform stability of adversarial
raining has been reported in Xiao et al. (2022), Xing et al. (2021). The
ata-dependent stability (Kuzborskij & Lampert, 2018) employing the

notion of on-average stability (Shalev-Shwartz et al., 2010) focused on
he stability of SGD-based standard training under the data distribution
iven an initialization point. Later, Lemire Paquin, Chaib-draa, and
iguère (2022) proved generalization bounds for SGD algorithms with
ormalized losses that appear in linear classifiers and homogeneous
eural networks.
Data Poisoning. As defensive strategies against unauthorized ex-

ploitation of personal data, availability attacks (Feng, Cai, & Zhou,
2019; Fowl et al., 2021; Huang, Ma, Erfani, Bailey, & Wang, 2021)
mperceptibly perturb training data so that trained models learn noth-

ing useful and become futile. Adversarial training can mitigate such
availability attacks (Tao, Feng, Yi, Huang, & Chen, 2021). Stability
attacks (Fu, He, Liu, Shen, & Tao, 2021; Tao et al., 2022; Wang, Wang,
& Wang, 2021; Wen, Zhao, Liu, Backes, Wang, & Zhang, 2023) have
been proposed to come through adversarial training and result in a
arge degradation in the robust test performance.
 …

2 
The shortcut interpretation (Yu, Zhang, Chen, Yin & Liu, 2022)
suggests that stability poisoning attacks root ‘‘easy-to-learn’’ features
in the poisoned training data. However, these features do not appear
n clean data. Our generalization bound can be used to interpret the
hrinkage of generalization gaps in adversarial training under stability

attacks, since it contains information of the data distribution.

3. Preliminaries

In this section, we revisit the robust generalization gap and the
on-average stability analysis.

3.1. Robust generalization gap

Let  be a data distribution over an image classification data space
D = [0, 1]𝑑 × [𝑚], where [0, 1]𝑑 contains the image space and [𝑚] =
{1,… , 𝑚} is the label set. A dataset 𝑆 of 𝑛 samples is drawn i.i.d. from
 and is denoted by 𝑆 ∼ 𝑛. Given a network with parameters 𝜃 and a
non-negative loss function 𝑙(𝜃 , 𝑧) ∶ R𝑘 ×D → R≥0, the standard training
minimizes the empirical risk E𝑧∈𝑆 𝑙(𝜃 , 𝑧) with SGD.

Adversarial Training. As a major defense approach, adversarial
training (Madry et al., 2017) refers to a bi-level optimization, of which
he inner maximization iteratively searches for the strongest perturba-
ion inside a 𝐿𝑝-norm ball and the outer minimization optimizes the
odel via the loss on the perturbed data. Formally, given an adversarial

udget 𝜖, the adversarial training uses the adversarial loss:
ℎ(𝜃 , 𝑧) = max

𝑧′∈𝜖 (𝑧)
𝑙(𝑧′, 𝜃),

where 𝜖(𝑧) = {𝑧′ ∈ D ∶ ‖𝑧′ − 𝑧‖𝑝 ≤ 𝜖} and 𝑝 ∈ N ∪ {∞}. Here,
the 𝑝-norm is for the image part of 𝑧. When 𝜖 = 0, we have ℎ = 𝑙
nd adversarial training reduces to standard training. The adversarial
opulation risk and adversarial empirical risk are respectively defined as

(𝜃) = E𝑧∼[ℎ(𝜃 , 𝑧)] and 𝑆 (𝜃) = E𝑧∈𝑆 [ℎ(𝜃 , 𝑧)].
We denote the SGD algorithm of adversarial training by , which
nputs a training set 𝑆 and outputs a parameter set (𝑆) of a network
hrough minimizing the adversarial empirical risk 𝑆 .
Robust Generalization Gap. Let 𝜃∗, 𝜃̄ be the optimal solutions of

earning over  and 𝑆, namely minimizing (𝜃) and 𝑆 (𝜃), respec-
ively. Then, for the output 𝜃̂ = (𝑆) of algorithm , the excess risk
an be decomposed as

(𝜃̂) −(𝜃∗) = (𝜃̂) −𝑆 (𝜃̂)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝜀gen

+𝑆 (𝜃̂) −𝑆 (𝜃̄)
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

𝜀opt

+𝑆 (𝜃̄) −𝑆 (𝜃∗)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

≤0

+𝑆 (𝜃∗) −(𝜃∗)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

E=0

.

To control the excess risk, we need to control the robust generalization
gap 𝜀gen and the robust optimization gap 𝜀opt . The robust optimization gap
n adversarial training has been studied a lot theoretically (Nemirovski,

Juditsky, Lan, & Shapiro, 2009; Xiao et al., 2022). In addition, empirical
esults (Madry et al., 2017; Wang et al., 2019; Wu et al., 2020; Zhang

et al., 2019) present narrow robust optimization gaps.
On the other hand, robust overfitting (Rice et al., 2020) is a dom-

inant phenomenon in adversarial training that hinders deep neural
etworks from attaining high robust performance. Hence, we focus on
he robust generalization gap 𝜀gen in this paper and an upper bound for
𝜀gen is called a generalization bound.

3.2. On-average stability

In order to analyze the data-dependent stability, we employ the
otion of on-average stability. Given a dataset 𝑆 = {𝑧1,… , 𝑧𝑛} ∼ 𝑛 and
∼ , replacing 𝑧𝑖 in 𝑆 with 𝑧, we denote 𝑆 𝑖,𝑧 = {𝑧1,… , 𝑧𝑖−1, 𝑧, 𝑧𝑖+1,
, 𝑧 } with 𝑖 ∈ [𝑛].
𝑛
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Definition 1 (On-Average Stability). A randomized algorithm  is 𝜀-on-
verage stable if

sup
𝑖∈[𝑛]

E𝑆 ,𝑧,[ℎ((𝑆), 𝑧) − ℎ((𝑆 𝑖,𝑧), 𝑧)] ≤ 𝜀, (1)

where 𝑆 ∼ 𝑛, 𝑧 ∼ , and 𝜀 can depend on the data distribution  and
he initialization point of .

The on-average stability considers the expected difference between
he losses of algorithm outputs on 𝑆 and its replace-one-example ver-
ion for all replacement index 𝑖. The on-average stability derives the
eneralization bound as follows.

Theorem 2 (Kuzborskij & Lampert, 2018). If  is 𝜀-on-average stable,
then the robust generalization gap of  is bounded by 𝜀: E𝑆 ,[((𝑆)) −
𝑆 ((𝑆))] ≤ 𝜀, that is, the generalization bound of  is 𝜖.

4. Theoretical results

In this section, we give the data-dependent stability analysis of
dversarial training for both convex and non-convex adversarial losses.
e provide proof sketches of our results, and the full proofs are placed

n Appendix A.

4.1. Lipschitz conditions

Stability analysis always relies on some Lipschitz conditions. The
oss function is assumed to be 𝐿-Lipschitz and 𝛽-gradient Lipschitz,

which is called 𝛽-smooth in the work (Hardt et al., 2016). For adversar-
ial training, we need the adversarial loss ℎ(𝜃 , 𝑧) to satisfy some Lipschitz
conditions. It is not reasonable to directly endow ℎ with Lipschitz
conditions, since ℎ(𝜃 , 𝑧) takes the maximum of 𝑙(𝜃 , 𝑧′) with 𝑧′ ∈ 𝜖(𝑧).
Instead, we assume that the original loss function 𝑙(𝜃 , 𝑧) satisfies the
following Lipschitz conditions. Let ‖ ⋅ ‖𝑝 be the 𝑝-norm of vectors or
matrices and we write ‖ ⋅ ‖ instead of ‖ ⋅ ‖2 for brevity. In this paper, ∇
is the abbreviation for ∇𝜃 .

Assumption 3. The loss 𝑙 is 𝐿-Lipschitz in 𝜃:

‖𝑙(𝜃1, 𝑧) − 𝑙(𝜃2, 𝑧)‖ ≤ 𝐿‖𝜃1 − 𝜃2‖.

Assumption 4. The loss 𝑙 is 𝐿𝜃-gradient Lipschitz in 𝜃 and 𝐿𝑧-gradient
Lipschitz in 𝑧:

‖∇𝑙(𝜃1, 𝑧) − ∇𝑙(𝜃2, 𝑧)‖ ≤ 𝐿𝜃‖𝜃1 − 𝜃2‖,

∇𝑙(𝜃 , 𝑧1) − ∇𝑙(𝜃 , 𝑧2)‖ ≤ 𝐿𝑧‖𝑧1 − 𝑧2‖𝑝.

Assumption 5. The loss 𝑙 is 𝐻𝜃-Hessian Lipschitz in 𝜃 and 𝐻𝑧-Hessian
ipschitz in 𝑧:

‖∇2𝑙(𝜃1, 𝑧) − ∇2𝑙(𝜃2, 𝑧)‖ ≤ 𝐻𝜃‖𝜃1 − 𝜃2‖,

‖∇2𝑙(𝜃 , 𝑧1) − ∇2𝑙(𝜃 , 𝑧2)‖ ≤ 𝐻𝑧‖𝑧1 − 𝑧2‖𝑝.

Remark 6. For commonly used losses and ReLU-based networks,
Assumption 3 is valid (Gao et al., 2022). The gradient Lipschitz condi-
tions (Lipschitz smoothness) are often used in robustness analysis (Liu,
alzmann, Lin, Tomioka, & Süsstrunk, 2020; Sinha, Namkoong, Volpi,

& Duchi, 2017; Xiao et al., 2022). Lipschitz Hessians are used in the
analysis of SGD (Ge, Huang, Jin, & Yuan, 2015; Kuzborskij & Lampert,
2018). Assumptions 4 and 5 are valid for networks based on smooth
ctivation functions such as Sigmoid and smooth loss functions such as
ross-entropy (CE) and mean squared error (MSE). Related works on
eLU-based networks were given in Allen-Zhu, Li, and Song (2019),

Du, Lee, Li, Wang, and Zhai (2019).
3 
Note that the adversarial vulnerability of deep networks is rooted in
he explosion of the Lipschitz constant of 𝑙(𝜃 , 𝑧) in 𝑧. However, the zero-
rder Lipschitz constant in 𝜃 can be directly inherited by ℎ(𝜃 , 𝑧) (Liu

et al., 2020). Additional Lipschitz conditions in 𝑧 imply approximate
radient and Hessian Lipschitz conditions in 𝜃 which are needed for

stability analysis.

Definition 7. Let 𝜂 , 𝛽 , 𝜈 , 𝜌 > 0 and ℎ(𝜃) be a second-order differentiable
function.

1. ℎ is 𝜂-approximately 𝛽-gradient Lipschitz, if

‖∇ℎ(𝜃1) − ∇ℎ(𝜃2)‖ ≤ 𝛽‖𝜃1 − 𝜃2‖ + 𝜂 .

2. ℎ is 𝜈-approximately 𝜌-Hessian Lipschitz, if

‖∇2ℎ(𝜃1) − ∇2ℎ(𝜃2)‖ ≤ 𝜈‖𝜃1 − 𝜃2‖ + 𝜌.

Lemma 8. The adversarial loss ℎ(𝜃 , 𝑧) inherits (approximate) Lipschitz
roperties from the original loss 𝑙(𝜃 , 𝑧).
1. Under Assumption 3, ℎ is 𝐿-Lipschitz with respect to 𝜃:

‖ℎ(𝜃1, 𝑧) − ℎ(𝜃2, 𝑧)‖ ≤ 𝐿‖𝜃1 − 𝜃2‖.

2. Under Assumption 4, ℎ is 2𝜖 𝐿𝑧-approximately 𝐿𝜃-gradient Lipschitz
with respect to 𝜃:
‖∇ℎ(𝜃1, 𝑧) − ∇ℎ(𝜃2, 𝑧)‖ ≤ 𝐿𝜃‖𝜃1 − 𝜃2‖ + 2𝜖 𝐿𝑧.

3. Under Assumption 5, ℎ is 2𝜖 𝐻𝑧-approximately 𝐻𝜃-Hessian Lips-
chitz with respect to 𝜃:
‖∇2ℎ(𝜃1, 𝑧) − ∇2ℎ(𝜃2, 𝑧)‖ ≤ 𝐻𝜃‖𝜃1 − 𝜃2‖ + 2𝜖 𝐻𝑧.

4.2. Preliminaries for analysis

We consider the SGD without replacement, that is, given a training
et 𝑆 ∼ 𝑛, algorithm  chooses a random permutation 𝜋 over
𝑛] = {1,… , 𝑛} and cycles through 𝑆 in the order determined by the
ermutation. If not mentioned otherwise, our analyses focus on the
n-average stability of adversarial training in a single pass.

Suppose the update of  starts from an initialization point 𝜃1 and
for 𝑡 ∈ [𝑛],
𝜃𝑡+1 = (𝜃𝑡, 𝑧𝜋(𝑡), 𝛼𝑡),
where the permutation 𝜋 depends on  and 𝛼𝑡 is the 𝑡th step size. We
update 𝑇 steps in a single pass for 𝑇 ∈ [𝑛] and analyze the on-average
stability of the algorithm output (𝑆) = 𝜃𝑇+1. We assume that the
ariance of stochastic gradients in  obeys

E𝑆 [‖∇ℎ(𝜃𝑡, 𝑧𝜋(𝑡)) − ∇(𝜃𝑡)‖2] ≤ 𝜎2 (2)

for all 𝑡 ∈ [𝑇 ]. The variance 𝜎 describes the distance between the
stochastic gradient and the optimal gradient. Indeed, 𝜎 will change if
the distribution  changes.

4.3. Convex adversarial losses

For convex adversarial losses, our analysis requires the approximate
gradient Lipschitz assumption.

Theorem 9. Assume that the adversarial loss ℎ(𝜃 , 𝑧) is non-negative, con-
vex in 𝜃, 𝐿-Lipschitz and 𝜂-approximately 𝛽-gradient Lipschitz with respect
o 𝜃. Let the step sizes 𝛼𝑡 ≤ 1∕𝛽. Then algorithm  is 𝜀(, 𝜃1)-on-average
stable with

𝜀(, 𝜃1) = ( 2𝜎 𝐿 + 𝐿𝜂)
𝑇
∑

𝛼𝑡 +
4𝐿

√

√

√

√

𝑇
∑

𝛼𝑡
𝑛 𝑡=1 𝑛 𝑡=1
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⋅

√

√

√

√(𝜃1) −(𝜃∗) +
𝛽 𝜎2
2

𝑇
∑

𝑡=1
𝛼2𝑡 + 𝜂 𝐿

𝑇
∑

𝑡=1
𝛼𝑡, (3)

where 𝜃1 is the initialization point.
Proof sketch. Given a dataset 𝑆 = {𝑧1,… , 𝑧𝑛} ∼ 𝑛, an example
∼ , and an index 𝑖 ∈ [𝑛], we denote 𝑆 𝑖,𝑧 = {𝑧′1,… , 𝑧′𝑛} with

′
𝑗 = 𝑧𝑗 for 𝑗 ≠ 𝑖 and 𝑧′𝑖 = 𝑧. Let 𝜃𝑡, 𝜃′𝑡 be the 𝑡th outputs of (𝑆) and
(𝑆𝑖,𝑧), respectively. Denote the distance of two trajectories at step 𝑡

y 𝛿𝑡(𝑆 , 𝑧, 𝑖,) = ‖𝜃𝑡 − 𝜃′𝑡‖. As both updates start from 𝜃1, we have
𝛿1(𝑆 , 𝑧, 𝑖,) = 0. Denote 𝛥𝑡(𝑆 , 𝑧, 𝑖) = E[𝛿𝑡(𝑆 , 𝑧, 𝑖,)|𝛿𝑡0 (𝑆 , 𝑧, 𝑖,) = 0].
Lemma 17 (Lemma 5 in Kuzborskij & Lampert, 2018) tells us that

E𝑆 ,𝑧,[ℎ(𝜃𝑡, 𝑧) − ℎ(𝜃′𝑡 , 𝑧)] ≤ 𝐿E𝑆 ,𝑧[𝛥𝑡(𝑆 , 𝑧, 𝑖)].
According to whether the algorithm meets the different sample with
ndex 𝑖 at step 𝑡, we derive the following recursion formula involving
he adversarial budget 𝜂 = 2𝜖 𝐿𝑧,
𝛥𝑡+1(𝑆 , 𝑧, 𝑖) ≤ 𝛥𝑡(𝑆 , 𝑧, 𝑖) + (1 −1

𝑛
)𝛼𝑡𝜂+

𝛼𝑡
𝑛
E[‖∇ℎ(𝜃𝑡, 𝑧𝜋(𝑡))‖+‖∇ℎ(𝜃′𝑡 , 𝑧′𝜋(𝑡))‖].

By repeatedly applying Jensen’s inequality, both expectations
E𝑆 [

∑𝑇
𝑡=1 𝛼𝑡‖∇ℎ(𝜃𝑡, 𝑧𝜋(𝑡))‖] and E𝑧,𝑆 [

∑𝑇
𝑡=1 𝛼𝑡‖∇ℎ(𝜃

′
𝑡 , 𝑧′𝜋(𝑡))‖] have the same

upper bound (Lemma 19)
𝑇

𝑡=1
𝜎 𝛼𝑡 + 2

√

√

√

√

𝑇
∑

𝑡=1
𝛼𝑡 ⋅

√

√

√

√𝑟 +
𝛽
2

𝑇
∑

𝑡=1
𝜎2𝛼2𝑡 + 𝜂 𝐿

𝑇
∑

𝑡=1
𝛼𝑡,

where 𝑟 = (𝜃1) − (𝜃∗). Then, we can recursively bound
E𝑆 ,𝑧,[ℎ(𝜃𝑡, 𝑧) − ℎ(𝜃′𝑡 , 𝑧)] and prove the theorem.

Remark 10. By Theorem 2, Theorem 9 gives an upper bound 𝜀(, 𝜃1)
for the robust generalization gap of algorithm , that is, 𝜀(, 𝜃1) is a
stability generalization bound, which is also the case for Theorems 12
and 13.

When the step size is 𝛼𝑡 = ( 1
√

𝑡
) ≤ 1

𝛽 and the adversarial budget
is 𝜖 = 0, this bound reduces to the result in Kuzborskij and Lampert
(2018). Now we fix step sizes to be constant and bound the adver-
sarial loss gap between the initialization point and the optima via the
Lipschitz condition.

Corollary 11. Let the step size 𝛼𝑡 be a constant 𝛼 ≤ 1∕𝛽 and 𝑟 =
(𝜃1) −(𝜃∗). Then algorithm  is 𝜀(, 𝜃1)-on-average stable with

𝜀(, 𝜃1) = 𝜂 𝛼 𝐿𝑇 + 2𝛼 𝐿𝑇
𝑛

(𝜎 +
√

2𝜎 + 2
√

𝜂 𝐿) + 4𝐿
√

𝛼 𝑟𝑇
𝑛

. (4)

Comparison. We compare our result with existing results for ad-
ersarial training with convex adversarial losses in a single pass. For
larity, we take a constant step size 𝛼 and use the  notation.

• Result of Xing et al. (2021):

(𝛼 𝐿2
√

𝑇 + 𝛼 𝐿2𝑇
𝑛

). (5)

• Result of Xiao et al. (2022):

(𝜂 𝛼 𝐿𝑇 + 𝛼 𝐿2𝑇
𝑛

). (6)

• Our result:

(𝜂 𝛼 𝑇 𝐿 +
𝛼 𝜎 𝐿𝑇 + 𝛼

√

𝜂 𝐿1.5𝑇 + 𝐿
√

𝛼 𝑟𝑇
𝑛

) (7)

The smoothness of ℎ is not required for the result of Xing et al. (2021).
The bound (5) remains unchanged under changes in the adversarial
raining budget 𝜖. Thus, this result does not capture the empirical

observations that the robust overfitting phenomenon deteriorates as
𝜖 grows. The approximate smoothness of ℎ is required for the result
of Xiao et al. (2022). The bound (6) takes into account 𝜖, i.e. 𝜂 =
2𝜖 𝐿 by the second statement in Lemma 8. However, this bound stays
𝑧

4 
unchanged whenever the distribution shifts or the initialization point
changes. Detailed discussion is shown in Appendix B.

Our bound grows with the adversarial training budget 𝜖 as well. In
the general case, (6) and (7) are both (𝑇 ). When 𝜂 = 0, our bound
educes to ( 𝛼 𝜎 𝐿𝑇+𝐿

√

𝛼 𝑟𝑇
𝑛 ) which is the case for standard training. In

he case where 𝜂 = 0 and 𝜎 is negligible, our bound is dominated by
he term 𝐿

√

𝛼 𝑟𝑇
𝑛 and becomes tighter than (𝑇 ) in Eqs. (5) and (6).

ince 𝑟 relies on 𝜃1 and , our result implies that a properly selected
nitialization point matters for robust generalization, and a potential
istribution shift caused by some poisoning attack may affect robust
eneralization.

4.4. Non-convex adversarial losses

For non-convex adversarial losses, our analysis requires both ap-
proximate gradient Lipschitz and approximate Hessian Lipschitz as-
sumptions.

Theorem 12. Suppose the adversarial loss ℎ(𝜃 , 𝑧) is non-negative,
𝐿-Lipschitz, 𝜂-approximately 𝛽-gradient Lipschitz and 𝜈-approximately 𝜌-
Hessian Lipschitz with respect to 𝜃. Let the step sizes 𝛼𝑡 = 𝑐

𝑡 with 𝑐 ≤
min{ 1

𝛽 ,
1

4𝛽 ln 𝑇 ,
1

8(𝛽 ln 𝑇 )2 }. Then  is 𝜀(, 𝜃1)-on-average stable with

𝜀(, 𝜃1) =
1 + 1

𝑐 𝛾
𝑛

(2𝑐 𝐿2 + 𝑛𝑐 𝜂 𝐿)
1

1+𝑐 𝛾 ⋅ (E𝑆 ,[((𝑆))]𝑇 )
𝑐 𝛾

1+𝑐 𝛾 , (8)

where

𝛾 = min{𝛽 , ̃(E𝑧[‖∇2ℎ(𝜃1, 𝑧)‖] + 𝜈 + 𝛥∗)},
∗ = 𝜌(

√

((𝜃1) −(𝜃∗))𝑐 + 𝑐 𝜎 + 𝑐
√

𝜂 𝐿).

Proof sketch. By Lemma 17 (Lemma 5 in Kuzborskij & Lampert,
2018), ∀𝑡0 ∈ [𝑛 + 1],
E𝑆 ,𝑧,[ℎ(𝜃𝑇+1, 𝑧) − ℎ(𝜃′𝑇+1, 𝑧)] ≤ 𝐿E𝑆 ,𝑧[𝛥𝑇+1(𝑆 , 𝑧, 𝑖)]

+
𝑡0 − 1
𝑛

E𝑆 ,[(𝜃𝑇+1)].

The key is to recursively bound 𝛥𝑇+1(𝑆 , 𝑧, 𝑖). When the algorithm meets
the different sample with index 𝑖 at step 𝑡 with probability 1

𝑛 , we have

‖(𝜃𝑡) − (𝜃′𝑡 )‖ ≤ 𝛿𝑡(𝑆 , 𝑧, 𝑖,) + 2𝛼𝑡𝐿.
Otherwise, the second statement in Lemma 16 (from Xiao et al., 2022)
implies

‖(𝜃𝑡) − (𝜃′𝑡 )‖ ≤ (1 + 𝛼𝑡𝛽)𝛿𝑡(𝑆 , 𝑧, 𝑖,) + 𝛼𝑡𝜂 .
Additionally, in this case, Lemma 20 starts from Taylor expansion
with integral remainder and exploits the approximate Hessian Lipschitz
condition, deriving another bound as

‖(𝜃𝑡) − (𝜃′𝑡 )‖ ≤ (1 + 𝛼𝑡𝜉𝑡(𝑆 , 𝑧, 𝑖,))𝛿𝑡(𝑆 , 𝑧, 𝑖,),

where

E𝑆 ,𝑧[𝜉𝑡(𝑆 , 𝑧, 𝑖,)] = ̃(E𝑧[‖∇2ℎ(𝜃1, 𝑧)‖] + 𝜈 + 𝛥∗).
Let 𝜓𝑡(𝑆 , 𝑧, 𝑖) = E[min{𝜉𝑡(𝑆 , 𝑧, 𝑖,), 𝛽}] and we have

𝛥𝑡+1(𝑆 , 𝑧, 𝑖) ≤ 1
𝑛
(𝛥𝑡(𝑆 , 𝑧, 𝑖) + 2𝛼𝑡𝐿) + (1 − 1

𝑛
)((1 +𝛼𝑡𝜓𝑡(𝑆 , 𝑧, 𝑖))𝛥𝑡(𝑆 , 𝑧, 𝑖) +𝛼𝑡𝜂).

Assigning proper step sizes 𝛼𝑡 and leveraging Lemma 21, the on-average
stability is given as

E𝑆 ,𝑧,[ℎ(𝜃𝑇+1, 𝑧) − ℎ(𝜃′𝑇+1, 𝑧)] ≤ (
2𝐿2 + 𝜂 𝑛𝐿

2𝑛𝛾
)( 𝑇
𝑡0 − 1 )

2𝑐 𝛾

+
𝑡0 − 1
𝑛

E𝑆 ,[(𝜃𝑇 )].

Then we take the optimal 𝑡0 and prove the theorem.
From Eq. (8), we see that smaller 𝛾 yields higher stability. Note

hat 𝛾 is controlled by 𝜂 and 𝜈, the adversarial population risk at the
nitialization point, and the average Hessian norm of adversarial loss

at the initialization point over the distribution.
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Since SGD in a single pass is considered, we take 𝑇 ≈ 𝑛 and obtain
hat 𝜀(, 𝜃1) = (𝑛−

1
1+𝑐 𝛾 ) which can be improved to a more optimistic

esult (𝑛−1) when the adversarial empirical risk 𝑆 ((𝑆)) becomes
negligible according to Kuzborskij and Lampert (2018). Due to 𝜂 =
2𝜖 𝐿𝑧 and 𝜈 = 2𝜖 𝐻𝑧, a large adversarial budget 𝜖 makes the algorithm
unstable and setting 𝜖 = 0 derives the result for standard training. The
gradient and Hessian Lipschitz constants 𝐿𝑧 and 𝐻𝑧 amplify the effect
of 𝜖 and this explains why adversarial training appears to be more tricky
than standard training and requires more training data (Gowal et al.,
2021; Schmidt et al., 2018; Wang et al., 2023).

The initialization point is another factor that affects robust general-
zation. Intuitively, adversarial training prefers an initialization point
aturally with low adversarial population risk which is close to the
lobal optima. Furthermore, our result suggests that a proper selection
f the initialization point should better have a low curvature over the
istribution.
Comparison. Assume that the adversarial loss ℎ(𝜃 , 𝑧) is bounded in

0, 𝐵] and 𝛼𝑡 =
𝑐
𝑡 with 𝑐 ≤ 1

𝛽 . The result1 of Xiao et al. (2022) for the
non-convex case is
1 + 1

𝑐 𝛽
𝑛

(2𝑐 𝐿2 + 𝑛𝑐 𝜂 𝐿)
1

1+𝑐 𝛽 (𝐵 𝑇 )
𝑐 𝛽

1+𝑐 𝛽 . (9)

Observe that (8) and (9) have similar forms. Nevertheless, (9) remains
nchanged under data poisoning attacks. Our result replaces 𝛽 with 𝛾
hich captures much more information dependent on the initialization
oint, the loss function, and data distribution. Besides 𝜂, the approx-
mation 𝜈 emphasizes the effect of 𝜖 again in our bound. Moreover,

and 𝑐 are bounded by 𝛽 and 1
𝛽 respectively in (8). During training,

he size of the dataset 𝑛 is fixed and the term involving the training
step 𝑇 dominates the bound in Eq. (8), namely smaller 𝛾 means smaller
E𝑆 ,[((𝑆))]𝑇 )

𝑐 𝛾
1+𝑐 𝛾 , and then a tighter bound. Thus, our result is no

orse than (9).
Multiple-pass Case. Note that Eq. (8) holds within one pass

hrough the training set. If we loosen some data-dependency require-
ents, say 𝛾, the on-average stability analysis provides a result for the

multiple-pass case.

Theorem 13 (Multiple-pass Case). Assume the adversarial loss ℎ(𝜃 , 𝑧)
is non-negative, convex in 𝜃, 𝐿-Lipschitz and 𝜂-approximately 𝛽-gradient
Lipschitz with respect to 𝜃. Let the step sizes 𝛼𝑡 ≤ 𝑐

𝑡 with 𝑐 ≤ 1
𝛽 . Then

lgorithm  is 𝜀(, 𝜃1)-on-average stable with

𝜀(, 𝜃1) =
1 + 1

𝑐 𝛽
𝑛

(2𝑐 𝐿2 + 𝑛𝑐 𝜂 𝐿)
1

1+𝑐 𝛽 (E𝑆 ,[((𝑆))]𝑇 )
𝑐 𝛽

1+𝑐 𝛽 . (10)

Both (8) and (10) contain the data-dependent factor E𝑆 ,
((𝑆))] which can be much smaller than 𝐵 in (9).

4.5. Poisoned generalization gap

To take a closer look at how changes in data distribution can affect
obust generalization, we consider the distribution shift caused by a

poisoning attack. A data poisoning attack  maps a distribution 
to the poisoned distribution #. Poisoning is usually constrained by
a given poisoning budget 𝜖′ such that sup𝑧∈D ‖(𝑧) − 𝑧‖𝑝 ≤ 𝜖′. The
poisoned version of an algorithm  is denoted by  which inputs
𝑆 ∼ 𝑛 and outputs  (𝑆) = ((𝑆)) by minimizing (𝑆)(𝜃). The
robust generalization gap of  (𝑆) over the poisoned distribution #
is called the poisoned generalization gap, denoted by 𝜀 . That is,
|E𝑆 ,

[#( (𝑆)) −(𝑆)( (𝑆))]| ≤ 𝜀 . (11)

1 They reported a conservative result in the paper. Here we place their
optimal result for comparison.
 c

5 
Influence of poisoning. Our data-dependent bounds in Eqs. (3)
and (8) embody the influence of poisoning. When the distribution 
is poisoned by  , the bound 𝜀(, 𝜃1) becomes 𝜀(#, 𝜃1). The expected
curvature at the initialization point becomes E𝑧[‖∇2ℎ(𝜃1,(𝑧))‖]. The
nitial population risk gap becomes #(𝜃1) −#(𝜃

∗
 ), in which 𝜃∗

is optimal with respect to #. Besides, the variance 𝜎 also depends on
the poisoning and becomes 𝜎 . Additionally, the adversarial population
isk E𝑆 ,

[#( (𝑆))] in the poisoned counterparts of Eqs. (8) and
(10) can be significantly influenced by poisoning. For non-convex
osses, we specify the poisoned robust generalization bound in the

following corollary:

Corollary 14. With the same notations in Theorem 12, in the presence
of poisoning  , the poisoned algorithm  is 𝜀(#, 𝜃1)-on-average stable
with

𝜀(#, 𝜃1) =
1 + 1

𝑐 𝛾′
𝑛

(2𝑐 𝐿2 + 𝑛𝑐 𝜂 𝐿)
1

1+𝑐 𝛾′ ⋅ (E𝑆 ,
[#( (𝑆))]𝑇 )

𝑐 𝛾′
1+𝑐 𝛾′ ,

(12)

where

𝛾 ′ = min{𝛽 , ̃(E𝑧[‖∇2ℎ(𝜃1,(𝑧))‖] + 𝜈 + 𝛥∗′)},
∗′ = 𝜌(

√

(#(𝜃1) −#(𝜃
∗
 ))𝑐 + 𝑐 𝜎 + 𝑐

√

𝜂 𝐿).

5. Experiments

In this section, experiments are used to demonstrate the data-
dependent stability of adversarial training and the advantages of our
theoretical results. We adopt the 𝐿∞ norm as constraints of impercep-
tible perturbations. The experimental setups and details are presented
in Appendix C.

5.1. Robust generalization

We adversarially train ResNet-18 (He, Zhang, Ren, & Sun, 2016) on
IFAR-10, CIFAR-100 (Krizhevsky, Hinton, et al., 2009), SVHN (Netzer
t al., 2011), and Tiny-ImageNet (Le & Yang, 2015). Fig. 1 shows that
he robust generalization is more difficult than the standard general-

ization, i.e. 𝜖 = 0 as shown by Eqs. (4) and (8). The effect of even a
small 𝜖 such as 2∕255 is amplified by the gradient and Hessian Lipschitz
constants in 𝑧, namely 𝐿𝑧 and 𝐻𝑧, and results in a large generalization
gap. Moreover, the robust generalization gap increases with 𝜖 which
implies that it is harder to ensure robustness in a broader area. Notice
that Fig. 1 does not mean adversarial training with a larger budget
leads to a less robust network, since here training and evaluation
leverage the same PGD attack to approximate the adversarial loss with
a given budget. Fig. 2 presents the robust overfitting phenomenon on
the four datasets. When training errors converge to zero, the robust
eneralization gaps (blue lines) grow throughout the whole training

procedure, while the robust test accuracy (red lines) increases in the
first 100 epochs, decreases from the first learning rate decay at the
100-th epoch, and then jumps a little at the 150-th epoch before
stabilizes.

5.2. Poisoned robust generalization

A poisoning attack is called a stability attack if the attack aims at
destroying the robustness of a model, trained on the poisoned training
set (𝑆) ∼ #𝑛, on the original distribution , i.e. ( (𝑆)).
tability attacks employed in this paper include the error-minimizing
oise (EM) (Huang et al., 2021), the robust error-minimizing noise

(REM) (Fu et al., 2021), the adversarial poisoning (ADV) (Fowl et al.,
2021), the hypocritical perturbation (HYP) (Tao et al., 2022) and the
lass-wise random noise (RAN). We poison both training and test sets
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Fig. 1. The robust performance of adversarial training with different AT budgets 𝜖 ranging from 0 to 8∕255. The adversarial training and robust evaluation leverage PGD-10 attack
with the same budget 𝜖.

Fig. 2. The robust overfitting phenomenon. With AT budget 𝜖 = 4∕255, we adversarially train a ResNet-10 on four datasets for 200 epochs. The blue line shows the gap between
robust training accuracy and robust test accuracy.
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Fig. 3. The robust generalization and robust test accuracy on poisoned CIFAR-10 under different stability attacks. The adversarial training budget 𝜖 = 4∕255 and the poisoning
budget 𝜖′ = 8∕255.
Fig. 4. The robust generalization and robust test accuracy on the poisoned data under HYP attack with different poisoning budgets. The adversarial training budget 𝜖 = 4∕255 and
the poisoning budget 𝜖′ varies.
d
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to simulate the poisoned distribution #. Detailed poisoning settings
are given in Appendix C.

Our bounds reflect the influence of data poisoning on the poisoned
robust generalization. First, effective stability attacks such as EM, HYP,
and REM, indeed result in the shrinkage of robust generalization gaps
n CIFAR-10 and ResNet-18 in Fig. 3. Comparing (a) and (b) of Fig. 3,

we see that robust generalization gaps present correlated trends to the
test performance as pointed out by our results, i.e. Eqs. (8) and (10).
We further study the robust generalization under the HYP attack with
various intensities, i.e., the poisoning budget 𝜖′, on CIFAR-100. A larger
budget leads to a stronger stability attack. Fig. 4 shows that a stronger
stability attack results in a lower robust test accuracy as well as a
arrower robust generalization gap on the poisoned data distribution,

which confirms the principle stated by our results again.

6. Conclusion

Motivated by the need to analyze the generalization ability for
dversarial training under data poisoning attacks, we present a data-
ependent stability analysis of adversarial training. Precisely, under
ertain reasonable smoothness conditions on the loss functions, we
rove that SGD-based adversarial training is an 𝜀(, 𝜃1)-on-average
table randomized algorithm, and thus give an upper bound 𝜀(, 𝜃1)

for the robust generalization gap of the training algorithm.
Our theoretical results provide three main insights for practical

dversarial training: (1) From the perspective of generalization bounds,
dversarial training is more challenging to generalize than standard
raining; the larger the robustness budget, the more difficult it is to
eneralize. Specifically speaking, in Theorems 9 and 12, the derived
ounds increase with 𝜂, 𝜈 which are proportional to the budget 𝜖
7 
as shown in Lemma 8. (2) Generalization heavily depends on the
ata distribution. Our bounds can characterize the change of robust

generalization in the presence of a poisoning attack as discussed in
Section 4.5. Our experiments show that even minor perturbations to
the data distribution can cause changes in the generalization bounds.
(3) Moreover, our results show that finding better initialization points
can help improve robust generalization.

Limitations and future works. Our theoretical results provide the first
ttempt to analyze the influence of distribution shifts on robust gen-
ralization bounds, but only partial solutions are given. More refined

generalization bounds for adversarial training to capture more rela-
tionships between robust generalization and distribution are a future
research problem. In particular, establishing relationships between sta-
bility generalization bound and data modification methods such as data
sampling (Wang, Liu, et al., 2021) is also a desired topic. Furthermore,
alternative forms of Assumptions 4 and 5 for ReLU-based networks need
o be further studied.
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Appendix A. Proofs

A.1. Proof of Lemma 8

Proof.

1. Assume ℎ(𝜃1, 𝑧) = 𝑙(𝜃1, 𝑧1) and ℎ(𝜃2, 𝑧) = 𝑙(𝜃2, 𝑧2). We have

‖ℎ(𝜃1, 𝑧) − ℎ(𝜃2, 𝑧)‖ = ‖𝑙(𝜃1, 𝑧1) − 𝑙(𝜃2, 𝑧2)‖.
Note that 𝑙(𝜃1, 𝑧1) ≥ 𝑙(𝜃1, 𝑧2) and 𝑙(𝜃2, 𝑧2) ≥ 𝑙(𝜃2, 𝑧1).
If 𝑙(𝜃1, 𝑧1) ≥ 𝑙(𝜃2, 𝑧2), then

‖𝑙(𝜃1, 𝑧1) − 𝑙(𝜃2, 𝑧2)‖ ≤ 𝑙(𝜃1, 𝑧1) − 𝑙(𝜃2, 𝑧1) ≤ 𝐿‖𝜃1 − 𝜃2‖.

If 𝑙(𝜃1, 𝑧1) ≤ 𝑙(𝜃2, 𝑧2), then

‖𝑙(𝜃1, 𝑧1) − 𝑙(𝜃2, 𝑧2)‖ ≤ 𝑙(𝜃2, 𝑧2) − 𝑙(𝜃1, 𝑧2) ≤ 𝐿‖𝜃1 − 𝜃2‖.

2. Assume that ℎ(𝜃1, 𝑧) = 𝑙(𝜃1, 𝑧1) and ℎ(𝜃2, 𝑧) = 𝑙(𝜃2, 𝑧2).
‖∇ℎ(𝜃1, 𝑧) − ∇ℎ(𝜃2, 𝑧)‖

=‖∇𝑙(𝜃1, 𝑧1) − ∇𝑙(𝜃2, 𝑧2)‖
≤‖∇𝑙(𝜃1, 𝑧1) − ∇𝑙(𝜃1, 𝑧2)‖ + ‖∇𝑙(𝜃1, 𝑧2) − ∇𝑙(𝜃2, 𝑧2)‖
≤𝐿𝜃‖𝜃1 − 𝜃2‖ + 𝐿𝑧‖𝑧1 − 𝑧2‖𝑝
≤𝐿𝜃‖𝜃1 − 𝜃2‖ + 2𝜖 𝐿𝑧.

3. Assume that ℎ(𝜃1, 𝑧) = 𝑙(𝜃1, 𝑧1) and ℎ(𝜃2, 𝑧) = 𝑙(𝜃2, 𝑧2).
‖∇2ℎ(𝜃1, 𝑧) − ∇2ℎ(𝜃2, 𝑧)‖

=‖∇2𝑙(𝜃1, 𝑧1) − ∇2𝑙(𝜃2, 𝑧2)‖
≤‖∇2𝑙(𝜃1, 𝑧1) − ∇2𝑙(𝜃1, 𝑧2)‖ + ‖∇2𝑙(𝜃1, 𝑧2) − ∇2𝑙(𝜃2, 𝑧2)‖
≤𝐻𝜃‖𝜃1 − 𝜃2‖ +𝐻𝑧‖𝑧1 − 𝑧2‖𝑝
≤𝐻𝜃‖𝜃1 − 𝜃2‖ + 2𝜖 𝐻𝑧. □

A.2. Proof of Theorem 9

We first prove several lemmas.
A core technique in stability analysis is to give the expansion

roperties of update rules.

Definition 15 (Expansion). The update rule  is 𝜄-approximately
𝜅-expansive, if ∀𝑧 ∈ D

‖(𝜃1, 𝑧, 𝛼) − (𝜃2, 𝑧, 𝛼)‖ ≤ 𝜅‖𝜃1 − 𝜃2‖ + 𝜄.

If the original loss 𝑙(𝜃 , 𝑧) is 𝛽-gradient Lipschitz in 𝜃, then the
update rule in standard training is 1-expansive in the convex case and
1 + 𝛼 𝛽)-expansive in the non-convex case (Hardt et al., 2016). If the

adversarial loss ℎ(𝜃 , 𝑧) is 𝜂-approximately 𝛽-gradient Lipschitz in 𝜃, then
the expansion coefficients in the update rule  remain unchanged in
oth convex and non-convex cases, while the approximation parameter
leads to an additional term 𝛼 𝜂 in each update (Xiao et al., 2022).

Lemma 16 (Xiao et al., 2022). Suppose that the adversarial loss ℎ(𝜃 , 𝑧)
is 𝜂-approximately 𝛽-gradient Lipschitz in 𝜃.

1. (𝜂-approximate descent.)
ℎ(𝜃1, 𝑧) − ℎ(𝜃2, 𝑧) ≤ ∇ℎ(𝜃2, 𝑧)⊤(𝜃1 − 𝜃2) +

𝛽
2
‖𝜃1 − 𝜃2‖2 + 𝜂‖𝜃1 − 𝜃2‖.
8 
2. The update rule  is 𝜂-approximately (1 + 𝛼 𝛽)-expansive:
‖(𝜃1, 𝑧, 𝛼) − (𝜃2, 𝑧, 𝛼)‖ ≤ (1 + 𝛼 𝛽)‖𝜃1 − 𝜃2‖ + 𝛼 𝜂 .

3. Assume in addition that ℎ(𝜃 , 𝑧) is convex in 𝜃, for 𝛼 ≤ 1∕𝛽, we have
‖(𝜃1, 𝑧, 𝛼) − (𝜃2, 𝑧, 𝛼)‖ ≤ ‖𝜃1 − 𝜃2‖ + 𝛼 𝜂 .

Given a dataset 𝑆 = {𝑧1,… , 𝑧𝑛} ∼ 𝑛, an example 𝑧 ∼ , and an
index 𝑖 ∈ [𝑛], we denote 𝑆𝑖,𝑧 = {𝑧′1,… , 𝑧′𝑛} with 𝑧′𝑗 = 𝑧𝑗 for 𝑗 ≠ 𝑖 and 𝑧′𝑖 =
. Let 𝜃𝑡, 𝜃′𝑡 be the 𝑡th outputs of (𝑆) and (𝑆 𝑖,𝑧) respectively. Denote

the distance of two trajectories at step 𝑡 by 𝛿𝑡(𝑆 , 𝑧, 𝑖,) = ‖𝜃𝑡 − 𝜃′𝑡‖.
As both updates start from 𝜃1, we have 𝛿1(𝑆 , 𝑧, 𝑖,) = 0. Since the on-
average stability in Definition 1 takes the supremum over the index
𝑖 ∈ [𝑛], the stability analysis aims at providing a unified bound for all
∈ [𝑛]. Thus, we will not point out the selection of 𝑖 in later statements
or brevity.

We restate Lemma 5 in Kuzborskij and Lampert (2018) on which
he data-dependent stability analysis relies. Note that this lemma holds
or SGD without replacement in both a single pass and multiple passes
hrough the training set. The multiple-pass case cycles through 𝑆
epeatedly in a fixed order determined by .

Lemma 17. Assume that the adversarial loss ℎ(𝜃 , 𝑧) is non-negative and
𝐿-Lipschitz in 𝜃. Then, ∀𝑡0 ∈ [𝑛 + 1],
E𝑆 ,𝑧,[ℎ(𝜃𝑡, 𝑧) − ℎ(𝜃′𝑡 , 𝑧)] ≤ 𝐿E𝑆 ,𝑧[E[𝛿𝑡(𝑆 , 𝑧, 𝑖,)|𝛿𝑡0 (𝑆 , 𝑧, 𝑖,) = 0]]

+
𝑡0 − 1
𝑛

E𝑆 ,[(𝜃𝑡)].

Due to the change in notation, we repeat the proof here.

Proof. By the Lipschitz condition and non-negativeness of ℎ, we have

ℎ(𝜃𝑡, 𝑧) − ℎ(𝜃′𝑡 , 𝑧)
(ℎ(𝜃𝑡, 𝑧) − ℎ(𝜃′𝑡 , 𝑧))I{𝛿𝑡0 (𝑆 , 𝑧, 𝑖,) = 0} + (ℎ(𝜃𝑡, 𝑧) − ℎ(𝜃′𝑡 , 𝑧))

× I{𝛿𝑡0 (𝑆 , 𝑧, 𝑖,) ≠ 0}

𝐿𝛿𝑡(𝑆 , 𝑧, 𝑖,)I{𝛿𝑡0 (𝑆 , 𝑧, 𝑖,) = 0} + ℎ(𝜃𝑡, 𝑧)I{𝛿𝑡0 (𝑆 , 𝑧, 𝑖,) ≠ 0}.

Take expectation w.r.t.  and we have
E[ℎ(𝜃𝑡, 𝑧) − ℎ(𝜃′𝑡 , 𝑧)] ≤ 𝐿E[𝛿𝑡(𝑆 , 𝑧, 𝑖,)|𝛿𝑡0 (𝑆 , 𝑧, 𝑖,) = 0]

+ E[ℎ(𝜃𝑡, 𝑧)I{𝛿𝑡0 (𝑆 , 𝑧, 𝑖,) ≠ 0}].
(A.1)

Note that the first time  selects the different example is 𝜋−1(𝑖). Since
that 𝜋−1(𝑖) ≥ 𝑡0 implies 𝛿𝑡0 (𝑆 , 𝑧, 𝑖,) = 0, we have I{𝛿𝑡0 (𝑆 , 𝑧, 𝑖,) ≠ 0} ≤
I{𝜋−1(𝑖) < 𝑡0}. It follows that

E𝑆 ,𝑧[E[ℎ(𝜃𝑡, 𝑧)I{𝛿𝑡0 (𝑆 , 𝑧, 𝑖,) ≠ 0}]]

≤ E𝑆 ,𝑧[E[ℎ(𝜃𝑡, 𝑧)I{𝜋−1(𝑖) < 𝑡0}]]
= E𝑧,[E𝑆 [ℎ(𝜃𝑡, 𝑧)]I{𝜋−1(𝑖) < 𝑡0}]. (A.2)

Recall that a realization of  is a permutation 𝜋 of [𝑛]. Thus, with a
fixed 𝜋, taking over 𝑆 ∼ 𝑛 equals taking over both 𝑆 ∼ 𝑛 and .

hat is, E𝑆 [ℎ(𝜃𝑡, 𝑧)] = E,𝑆 [ℎ(𝜃𝑡, 𝑧)]. As a consequence, we have

E𝑧,[E𝑆 [ℎ(𝜃𝑡, 𝑧)]I{𝜋−1(𝑖) < 𝑡0}]
E𝑆 ,𝑧,[ℎ(𝜃𝑡, 𝑧)]E[I{𝜋−1(𝑖) < 𝑡0}]
𝑡0 − 1
𝑛

E𝑆 ,𝑧,[ℎ(𝜃𝑡, 𝑧)]. (A.3)

Combining Eqs. (A.1) (A.2) and (A.3), we get the statement. □

Lemma 18. Suppose that the adversarial loss ℎ(𝜃 , 𝑧) is 𝐿-Lipschitz and
𝜂-approximately 𝛽-gradient Lipschitz in 𝜃. Then, in a single pass such that
𝑇 ∈ [𝑛], we have that
𝑇
∑

(𝛼𝑡 −
𝛽 𝛼2𝑡 )E𝑆 [‖∇(𝜃𝑡)‖2] ≤
𝑡=1 2
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(𝜃1) − E𝑆 [(𝜃𝑇 )] + 𝜂 𝐿
𝑇
∑

𝑡=1
𝛼𝑡

+
𝛽
2

𝑇
∑

𝑡=1
𝛼2𝑡 E𝑆 [‖∇ℎ(𝜃𝑡, 𝑧𝜋(𝑡)) − ∇(𝜃𝑡)‖2].

Proof. From the first statement in Lemma 16, we have

(𝜃𝑡+1) −(𝜃𝑡)

≤∇(𝜃𝑡)⊤(𝜃𝑡+1 − 𝜃𝑡) +
𝛽 𝛼2𝑡
2

‖∇ℎ(𝜃𝑡, 𝑧𝜋(𝑡))‖2 + 𝜂 𝛼𝑡‖∇ℎ(𝜃𝑡, 𝑧𝜋(𝑡))‖

≤(𝛽 𝛼2𝑡 − 𝛼𝑡)∇(𝜃𝑡)⊤∇ℎ(𝜃𝑡, 𝑧𝜋(𝑡)) + 𝜂 𝛼𝑡𝐿 +
𝛽 𝛼2𝑡
2

‖∇ℎ(𝜃𝑡, 𝑧𝜋(𝑡)) − ∇(𝜃𝑡)‖2

−
𝛽 𝛼2𝑡
2

‖∇(𝜃𝑡)‖2.

Since 𝜃𝑡 is determined by 𝑧𝜋(1),… , 𝑧𝜋(𝑡−1) and E𝑧𝜋(𝑡) [ℎ(𝜃𝑡, 𝑧𝜋(𝑡))] =
(𝜃𝑡), we have that

E𝑆 [∇(𝜃𝑡)⊤∇ℎ(𝜃𝑡, 𝑧𝜋(𝑡))] = E𝑆 [‖∇(𝜃𝑡)‖2].

Take expectation w.r.t. 𝑆 and rearrange terms,

(𝛼𝑡 −
𝛽 𝛼2𝑡
2

)E𝑆 [‖∇(𝜃𝑡)‖2] ≤

E𝑆 [(𝜃𝑡) −(𝜃𝑡+1) +
𝛽 𝛼2𝑡
2

‖∇ℎ(𝜃𝑡, 𝑧𝜋(𝑡)) − ∇(𝜃𝑡)‖2] + 𝜂 𝛼𝑡𝐿.
Sum the above over 𝑡 = 1,… , 𝑇 and get the statement. □

Lemma 19. Suppose that the adversarial loss ℎ(𝜃 , 𝑧) is 𝐿-Lipschitz and
𝜂-approximately 𝛽-gradient Lipschitz with respect to 𝜃, and the step sizes
𝑡 ≤ 1∕𝛽. Assume the variance of stochastic gradients in  obeys for all
𝑡 ∈ [𝑇 ]
E𝑆 [‖∇ℎ(𝜃𝑡, 𝑧𝜋(𝑡)) − ∇(𝜃𝑡)‖2] ≤ 𝜎2𝑡 .

We have

E𝑆 [
𝑇
∑

𝑡=1
𝛼𝑡‖∇ℎ(𝜃𝑡, 𝑧𝜋(𝑡))‖] ≤

𝑇
∑

𝑡=1
𝜎𝑡𝛼𝑡 + 2

√

√

√

√

𝑇
∑

𝑡=1
𝛼𝑡

√

√

√

√(𝜃1) −(𝜃∗) +
𝛽
2

𝑇
∑

𝑡=1
𝜎2𝑡 𝛼

2
𝑡 + 𝜂 𝐿

𝑇
∑

𝑡=1
𝛼𝑡

Proof. Repeatedly applying Jensen’s inequality, we have

E𝑆 [
𝑇
∑

𝑡=1
𝛼𝑡‖∇ℎ(𝜃𝑡, 𝑧𝜋(𝑡))‖]

≤
𝑇
∑

𝑡=1
𝛼𝑡E𝑆 [‖∇ℎ(𝜃𝑡, 𝑧𝜋(𝑡)) − ∇(𝜃𝑡)‖] +

𝑇
∑

𝑡=1
𝛼𝑡E𝑆 [‖∇(𝜃𝑡)‖]

≤
𝑇
∑

𝑡=1
𝛼𝑡
√

E𝑆 [‖∇ℎ(𝜃𝑡, 𝑧𝜋(𝑡)) − ∇(𝜃𝑡)‖2] +
𝑇
∑

𝑡=1
𝛼𝑡
√

E𝑆 [‖∇(𝜃𝑡)‖2]

≤
𝑇
∑

𝑡=1
𝜎𝑡𝛼𝑡 +

𝑇
∑

𝑡=1
𝛼𝑡
√

E𝑆 [‖∇(𝜃𝑡)‖2]

≤
𝑇
∑

𝑡=1
𝜎𝑡𝛼𝑡 + 2

𝑇
∑

𝑡=1
(𝛼𝑡 −

𝛽 𝛼2𝑡
2

)
√

E𝑆 [‖∇(𝜃𝑡)‖2]

≤
𝑇
∑

𝑡=1
𝜎𝑡𝛼𝑡 + 2

√

√

√

√

𝑇
∑

𝑡=1
(𝛼𝑡 −

𝛽 𝛼2𝑡
2

)

√

√

√

√

𝑇
∑

𝑡=1
(𝛼𝑡 −

𝛽 𝛼2𝑡
2

)E𝑆 [‖∇(𝜃𝑡)‖2]

≤
𝑇
∑

𝑡=1
𝜎𝑡𝛼𝑡 + 2

√

√

√

√

𝑇
∑

𝑡=1
𝛼𝑡

√

√

√

√(𝜃1) −(𝜃∗) +
𝛽
2

𝑇
∑

𝑡=1
𝜎2𝑡 𝛼

2
𝑡 + 𝜂 𝐿

𝑇
∑

𝑡=1
𝛼𝑡.

The penultimate inequality is by Lemma 18. □
9 
We now prove Theorem 9.

Proof. Denote 𝛥𝑡(𝑆 , 𝑧, 𝑖) = E[𝛿𝑡(𝑆 , 𝑧, 𝑖,)|𝛿𝑡0 (𝑆 , 𝑧, 𝑖,) = 0]. By
Lemma 17, ∀𝑡0 ∈ {1,… , 𝑛, 𝑛 + 1} we have

E𝑆 ,𝑧,[ℎ(𝜃𝑇+1, 𝑧) − ℎ(𝜃′𝑇+1, 𝑧)]

𝐿E𝑆 ,𝑧[𝛥𝑇+1(𝑆 , 𝑧, 𝑖)] + 𝑡0 − 1
𝑛

E𝑆 ,[(𝜃𝑇+1)].

At step 𝑡,  selects the example 𝜋(𝑡) = 𝑖 with probability 1∕𝑛 and
𝜋(𝑡) ≠ 𝑖 with probability 1 − 1∕𝑛. When 𝜋(𝑡) ≠ 𝑖, by the third statement
n Lemma 16, we have

𝛿𝑡+1(𝑆 , 𝑧, 𝑖,) ⋅ I{𝛿𝑡0 (𝑆 , 𝑧, 𝑖,) = 0}
≤𝛿𝑡(𝑆 , 𝑧, 𝑖,) ⋅ I{𝛿𝑡0 (𝑆 , 𝑧, 𝑖,) = 0} + 𝛼𝑡𝜂 .
When 𝜋(𝑡) = 𝑖, we have

𝛿𝑡+1(𝑆 , 𝑧, 𝑖,) ⋅ I{𝛿𝑡0 (𝑆 , 𝑧, 𝑖,) = 0}
≤𝛿𝑡(𝑆 , 𝑧, 𝑖,) ⋅ I{𝛿𝑡0 (𝑆 , 𝑧, 𝑖,) = 0} + 𝛼𝑡‖∇ℎ(𝜃𝑡, 𝑧𝜋(𝑡))‖ + 𝛼𝑡‖∇ℎ(𝜃′𝑡 , 𝑧′𝜋(𝑡))‖.
Take expectation w.r.t.  and we have

𝛥𝑡+1(𝑆 , 𝑧, 𝑖)
≤1
𝑛
(𝛥𝑡(𝑆 , 𝑧, 𝑖) + 𝛼𝑡E[‖∇ℎ(𝜃𝑡, 𝑧𝜋(𝑡))‖ + ‖∇ℎ(𝜃′𝑡 , 𝑧′𝜋(𝑡))‖])

+ (1 − 1
𝑛
)(𝛥𝑡(𝑆 , 𝑧, 𝑖) + 𝛼𝑡𝜂)

𝛥𝑡(𝑆 , 𝑧, 𝑖) + (1 − 1
𝑛
)𝛼𝑡𝜂 +

𝛼𝑡
𝑛
E[‖∇ℎ(𝜃𝑡, 𝑧𝜋(𝑡))‖ + ‖∇ℎ(𝜃′𝑡 , 𝑧′𝜋(𝑡))‖].

Thus, we have

E𝑆 ,𝑧,[ℎ(𝜃𝑇+1, 𝑧) − ℎ(𝜃′𝑇+1, 𝑧)]
𝐿
𝑛

𝑇
∑

𝑡=𝑡0

𝛼𝑡E𝑧,[E𝑆 [‖∇ℎ(𝜃𝑡, 𝑧𝜋(𝑡))‖ + ‖∇ℎ(𝜃′𝑡 , 𝑧′𝜋(𝑡))‖]] + (1 − 1
𝑛
)𝐿𝜂

𝑇
∑

𝑡=𝑡0

𝛼𝑡

+
𝑡0 − 1
𝑛

E𝑆 ,[(𝜃𝑇 )].

Here we take 𝑡0 = 1. By Lemma 19, we have

E𝑆 [
𝑇
∑

𝑡=1
𝛼𝑡‖∇ℎ(𝜃𝑡, 𝑧𝜋(𝑡))‖]

𝑇
∑

𝑡=1
𝜎 𝛼𝑡 + 2

√

√

√

√

𝑇
∑

𝑡=1
𝛼𝑡 ⋅

√

√

√

√(𝜃1) −(𝜃∗) +
𝛽
2

𝑇
∑

𝑡=1
𝜎2𝛼2𝑡 + 𝜂 𝐿

𝑇
∑

𝑡=1
𝛼𝑡,

and

E𝑧,𝑆 [
𝑇
∑

𝑡=1
𝛼𝑡‖∇ℎ(𝜃′𝑡 , 𝑧′𝜋(𝑡))‖]

E𝑆 [
𝑇
∑

𝑡=1
𝛼𝑡‖∇ℎ(𝜃𝑡, 𝑧𝜋(𝑡))‖]

𝑇
∑

𝑡=1
𝜎 𝛼𝑡 + 2

√

√

√

√

𝑇
∑

𝑡=1
𝛼𝑡 ⋅

√

√

√

√(𝜃1) −(𝜃∗) +
𝛽
2

𝑇
∑

𝑡=1
𝜎2𝛼2𝑡 + 𝜂 𝐿

𝑇
∑

𝑡=1
𝛼𝑡,

Thus,

E𝑆 ,𝑧,[ℎ(𝜃𝑇+1, 𝑧) − ℎ(𝜃′𝑇+1, 𝑧)] ≤ 2𝐿
𝑛

𝑇
∑

𝑡=1
𝜎 𝛼𝑡

+ 𝐿𝜂
𝑇
∑

𝑡=1
𝛼𝑡 +

4𝐿
𝑛

√

√

√

√

𝑇
∑

𝑡=1
𝛼𝑡 ⋅

√

√

√

√(𝜃1) −(𝜃∗) + 𝛽
2

𝑇
∑

𝑡=1
𝜎2𝛼2𝑡 + 𝜂 𝐿

𝑇
∑

𝑡=1
𝛼𝑡. □

A.3. Proof of Corollary 11

Proof.

( 2𝜎 𝐿 + 𝐿𝜂)
𝑇
∑

𝛼𝑡 +
4𝐿

√

√

√

√

𝑇
∑

𝛼𝑡⋅
𝑛 𝑡=1 𝑛 𝑡=1
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√

√

√

√(𝜃1) −(𝜃∗) +
𝛽 𝜎2
2

𝑇
∑

𝑡=1
𝛼2𝑡 + 𝜂 𝐿

𝑇
∑

𝑡=1
𝛼𝑡

=(2𝜎 𝐿
𝑛

+ 𝐿𝜂)𝛼 𝑇 + 4𝐿
𝑛

√

𝛼 𝑇 ((𝜃1) −(𝜃∗) +
𝛽 𝜎2𝛼3𝑇 2

2
+ 𝜂 𝐿𝛼2𝑇 2)

( 2𝜎 𝐿
𝑛

+ 𝐿𝜂)𝛼 𝑇 + 4𝐿
𝑛

√

𝛼 𝑇 𝑟 + 𝜎2𝛼2𝑇 2

2
+ 𝜂 𝐿𝛼2𝑇 2

≤𝜂 𝛼 𝑇 𝐿 + 2𝜎 𝛼 𝑇 𝐿
𝑛

+ 4𝐿
𝑛

(
√

𝛼 𝑇 𝑟 + 𝜎 𝛼 𝑇
√

2
+
√

𝜂 𝐿𝛼 𝑇 )

=𝜂 𝛼 𝑇 𝐿 + 2𝛼 𝑇 𝐿
𝑛

(𝜎 +
√

2𝜎 + 2
√

𝜂 𝐿) + 4𝐿
√

𝛼 𝑇 𝑟
𝑛

. □

A.4. Proof of Theorem 12

We first prove several lemmas.

Lemma 20. Suppose the adversarial loss ℎ(𝜃 , 𝑧) is 𝜈-approximately
𝜌-Hessian Lipschitz with respect to 𝜃. At step 𝑡 with 𝜋(𝑡) ≠ 𝑖, we have
‖(𝜃𝑡) − (𝜃′𝑡 )‖ ≤ (1 + 𝛼𝑡𝜉𝑡(𝑆 , 𝑧, 𝑖,))𝛿𝑡(𝑆 , 𝑧, 𝑖,),

where

𝜉𝑡(𝑆 , 𝑧, 𝑖,) = ‖∇ℎ(𝜃1, 𝑧𝜋(𝑡))‖+
𝜌
2

𝑡−1
∑

𝑘=1
𝛼𝑘‖∇ℎ(𝜃𝑘, 𝑧𝜋(𝑘)‖+‖∇ℎ(𝜃′𝑘, 𝑧′𝜋(𝑘))‖) +𝜈 .

Furthermore, when 𝛼𝑘 = 𝑐
𝑘 with 𝑐 ≤

1
𝛽 , we have

E𝑆 ,𝑧[𝜉𝑡(𝑆 , 𝑧, 𝑖,)]

E𝑧[‖∇2ℎ(𝜃1, 𝑧)‖] + 𝜈 + 2𝜌
√

(𝜃1) −(𝜃∗)𝑐(1 + ln 𝑡)
+ 2𝜌𝜎 𝑐

√

𝛽 𝑐(1 + ln 𝑡) + 𝜌𝑐(𝜎 + 2
√

𝜂 𝐿)(1 + ln 𝑡).

Proof. For 𝜋(𝑡) ≠ 𝑖, we have

‖(𝜃𝑡) − (𝜃′𝑡 )‖ ≤ ‖𝜃𝑡 − 𝜃′𝑡‖ + 𝛼𝑡‖∇ℎ(𝜃𝑡, 𝑧𝜋(𝑡)) − ∇ℎ(𝜃′𝑡 , 𝑧𝜋(𝑡))‖.
For brevity, we denote ℎ𝑡(𝜃) = ℎ(𝜃 , 𝑧𝜋(𝑡)). By Taylor expansion with
integral remainder, we have

∇ℎ𝑡(𝜃𝑡) − ∇ℎ𝑡(𝜃′𝑡 )

=∫

1

0
∇2ℎ𝑡(𝜃𝑡 + 𝜏(𝜃′𝑡 − 𝜃𝑡))𝑑 𝜏 ⋅ (𝜃𝑡 − 𝜃′𝑡 )

=∫

1

0
(∇2ℎ𝑡(𝜃𝑡 + 𝜏(𝜃′𝑡 − 𝜃𝑡)) − ∇2ℎ𝑡(𝜃1))𝑑 𝜏 ⋅ (𝜃𝑡 − 𝜃′𝑡 ) + ∇2ℎ𝑡(𝜃1) ⋅ (𝜃𝑡 − 𝜃′𝑡 ).

Since ℎ is 𝜈-approximately 𝜌-Hessian Lipschitz,

‖∇ℎ𝑡(𝜃𝑡) − ∇ℎ𝑡(𝜃′𝑡 )‖

≤ (𝜌∫

1

0
‖𝜃𝑡 + 𝜏(𝜃′𝑡 − 𝜃𝑡) − 𝜃1‖𝑑 𝜏 + 𝜈 + ‖∇2ℎ𝑡(𝜃1)‖) ⋅ ‖𝜃𝑡 − 𝜃′𝑡‖.

Note that

𝜃𝑡 + 𝜏(𝜃′𝑡 − 𝜃𝑡) − 𝜃1
= (1 − 𝜏)(𝜃𝑡 − 𝜃1) + 𝜏(𝜃′𝑡 − 𝜃1)

= (1 − 𝜏)
𝑡−1
∑

𝑘=1
(𝜃𝑘+1 − 𝜃𝑘) + 𝜏

𝑡−1
∑

𝑘=1
(𝜃′𝑘+1 − 𝜃

′
𝑘)

= (1 − 𝜏)
𝑡−1
∑

𝑘=1
𝛼𝑘∇ℎ(𝜃𝑘, 𝑧𝜋(𝑘)) + 𝜏

𝑡−1
∑

𝑘=1
𝛼𝑘∇ℎ𝑘(𝜃′𝑘, 𝑧′𝜋(𝑘)).

Therefore,

∫

1

0
‖𝜃𝑡 + 𝜏(𝜃′𝑡 − 𝜃𝑡) − 𝜃1‖𝑑 𝜏

≤ 1
𝑡−1
∑

𝛼𝑘‖∇ℎ(𝜃𝑘, 𝑧𝜋(𝑘)‖ + ‖∇ℎ(𝜃′𝑘, 𝑧′𝜋(𝑘))‖).
2 𝑘=1

10 
Taking 𝛼𝑘 =
𝑐
𝑘 and by Lemma 19, we have

1
2

𝑡−1
∑

𝑘=1
𝛼𝑘‖∇ℎ(𝜃𝑘, 𝑧𝜋(𝑘)‖ + ‖∇ℎ(𝜃′𝑘, 𝑧′𝜋(𝑘)‖))

𝜎
𝑡−1
∑

𝑘=1
𝛼𝑘 + 2

√

√

√

√

𝑡−1
∑

𝑘=1
𝛼𝑘 ⋅

√

√

√

√(𝜃1) −(𝜃∗) + 𝛽 𝜎2
2

𝑡−1
∑

𝑘=1
𝛼2𝑘 + 𝜂 𝐿

𝑡−1
∑

𝑘=1
𝛼𝑘

≤𝑐 𝜎(1 + ln 𝑡) + 2
√

𝑐(1 + ln 𝑡) ⋅
√

(𝜃1) −(𝜃∗) + 𝛽 𝑐2𝜎2 + 𝑐 𝜂 𝐿(1 + ln 𝑡)
≤2

√

(𝜃1) −(𝜃∗)𝑐(1 + ln 𝑡) + 2𝜎 𝑐√𝛽 𝑐(1 + ln 𝑡) + 𝑐(𝜎 + 2√𝜂 𝐿)(1 + ln 𝑡).
The penultimate inequality is due to
𝑡

∑

=1

1
𝑘
≤ 1 + ln 𝑡, and

𝑡
∑

𝑘=1

1
𝑘2

≤ 2 − 1
𝑡
. □

Lemma 21 (Bernstein-type Inequality Kuzborskij & Lampert, 2018). Let
be a zero-mean real-valued random variable such that |𝑍| ≤ 𝑏 and

[𝑍2] ≤ 𝜎2. Then for all |𝑐| ≤ 1
2𝑏 , we have that E[𝑒𝑐 𝑍 ] ≤ 𝑒𝑐2𝜎2 .

We now prove Theorem 12.

Proof. Let 𝛥𝑡(𝑆 , 𝑧, 𝑖) = E[𝛿𝑡(𝑆 , 𝑧, 𝑖,)|𝛿𝑡0 (𝑆 , 𝑧, 𝑖,) = 0]. By Lemma 17,
∀𝑡0 ∈ [𝑛 + 1],
E𝑆 ,𝑧,[ℎ(𝜃𝑇+1, 𝑧) − ℎ(𝜃′𝑇+1, 𝑧)] ≤ 𝐿E𝑆 ,𝑧[𝛥𝑇+1(𝑆 , 𝑧, 𝑖)]

+
𝑡0 − 1
𝑛

E𝑆 ,[(𝜃𝑇+1)].

When 𝜋(𝑡) = 𝑖 with probability 1
𝑛 , we have

‖(𝜃𝑡) − (𝜃′𝑡 )‖ ≤ 𝛿𝑡(𝑆 , 𝑧, 𝑖,) + 2𝛼𝑡𝐿.
When 𝜋(𝑡) ≠ 𝑖 with probability 1 − 1

𝑛 , we have

‖(𝜃𝑡) − (𝜃′𝑡 )‖ ≤ (1 + 𝛼𝑡𝛽)𝛿𝑡(𝑆 , 𝑧, 𝑖,) + 𝛼𝑡𝜂 ,
by the second statement in Lemma 16 and

‖(𝜃𝑡) − (𝜃′𝑡 )‖ ≤ (1 + 𝛼𝑡𝜉𝑡(𝑆 , 𝑧, 𝑖,))𝛿𝑡(𝑆 , 𝑧, 𝑖,),

by Lemma 20. Let

𝜓𝑡(𝑆 , 𝑧, 𝑖) = E[min{𝜉𝑡(𝑆 , 𝑧, 𝑖,), 𝛽}]

and we have

𝛥𝑡+1(𝑆 , 𝑧, 𝑖)
≤1
𝑛
(𝛥𝑡(𝑆 , 𝑧, 𝑖) + 2𝛼𝑡𝐿) + (1 − 1

𝑛
)((1 + 𝛼𝑡𝜓𝑡(𝑆 , 𝑧, 𝑖))𝛥𝑡(𝑆 , 𝑧, 𝑖) + 𝛼𝑡𝜂)

(1 + (1 − 1
𝑛
)𝛼𝑡𝜓𝑡(𝑆 , 𝑧, 𝑖))𝛥𝑡(𝑆 , 𝑧, 𝑖) + 2𝛼𝑡𝐿 + (𝑛 − 1)𝛼𝑡𝜂

𝑛

≤ exp((1 − 1
𝑛
)𝛼𝑡𝜓𝑡(𝑆 , 𝑧, 𝑖))𝛥𝑡(𝑆 , 𝑧, 𝑖) + 2𝛼𝑡𝐿

𝑛
+ 𝛼𝑡𝜂 .

Note that 𝛥𝑡0 (𝑆 , 𝑧, 𝑖) = 0 and 𝛼𝑡 =
𝑐
𝑡 . We have

𝛥𝑇+1(𝑆 , 𝑧, 𝑖)

≤
𝑇
∑

𝑡=𝑡0

(
𝑇
∏

𝑘=𝑡+1
exp(

(𝑛 − 1)𝑐 𝜓𝑘(𝑆 , 𝑧, 𝑖)
𝑛𝑘

))( 2𝑐 𝐿
𝑛𝑡

+
𝑐 𝜂
𝑡
)

=
𝑇
∑

𝑡=𝑡0

exp(
(𝑛 − 1)𝑐

𝑛

𝑇
∑

𝑘=𝑡+1

𝜓𝑘(𝑆 , 𝑧, 𝑖)
𝑘

)( 2𝑐 𝐿
𝑛𝑡

+
𝑐 𝜂
𝑡
).

Let 𝜇𝑘 = E𝑆 ,𝑧[𝜓𝑘(𝑆 , 𝑧, 𝑖)]. We have |𝜓𝑘(𝑆 , 𝑧, 𝑖) − 𝜇𝑘| ≤ 2𝛽 and

E𝑆 ,𝑧[exp(𝑐
𝑇
∑

𝑘=𝑡+1

𝜓𝑘(𝑆 , 𝑧, 𝑖)
𝑘

)]

= E𝑆 ,𝑧[exp(𝑐
𝑇
∑

𝑘=𝑡+1

𝜓𝑘(𝑆 , 𝑧, 𝑖) − 𝜇𝑘
𝑘

)] exp(𝑐
𝑇
∑

𝑘=𝑡+1

𝜇𝑘
𝑘
).

Since
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𝑇
∑

𝑘=𝑡+1

𝜓𝑘(𝑆 , 𝑧, 𝑖) − 𝜇𝑘
𝑘

| ≤ 2𝛽 ln 𝑇 ,

we assume 𝑐 ≤ min{ 1
2(2𝛽 ln 𝑇 )2 ,

1
2(2𝛽 ln 𝑇 ) }. By Lemma 21, we have

E𝑆 ,𝑧[exp(𝑐
𝑇
∑

𝑘=𝑡+1

𝜓𝑘(𝑆 , 𝑧, 𝑖) − 𝜇𝑘
𝑘

)]

≤ exp(𝑐2E𝑆 ,𝑧[(
𝑇
∑

𝑘=𝑡+1

𝜓𝑘(𝑆 , 𝑧, 𝑖) − 𝜇𝑘
𝑘

)2])

≤ exp( 𝑐
2
E𝑆 ,𝑧[( 1

2𝛽 ln 𝑇

𝑇
∑

𝑘=𝑡+1

𝜓𝑘(𝑆 , 𝑧, 𝑖) − 𝜇𝑘
𝑘

)2])

≤ exp( 𝑐
2
E𝑆 ,𝑧[|

𝑇
∑

𝑘=𝑡+1

𝜓𝑘(𝑆 , 𝑧, 𝑖) − 𝜇𝑘
𝑘

|])

≤ exp( 𝑐
2

𝑇
∑

𝑘=𝑡+1

E𝑆 ,𝑧[|𝜓𝑘(𝑆 , 𝑧, 𝑖) − 𝜇𝑘|]
𝑘

)

≤ exp(𝑐
𝑇
∑

𝑘=𝑡+1

𝜇𝑘
𝑘
).

It follows that

E𝑆 ,𝑧[exp(𝑐
𝑇
∑

𝑘=𝑡+1

𝜓𝑘(𝑆 , 𝑧, 𝑖)
𝑘

)] ≤ exp(𝑐
𝑇
∑

𝑘=𝑡+1

2𝜇𝑘
𝑘

).

Note that

𝜇𝑘 ≤ min{E[E𝑆 ,𝑧[𝜉𝑘(𝑆 , 𝑧, 𝑖,)]], 𝛽}.
Assuming in addition that 𝑐 ≤ 1

𝛽 , we have E𝑆 ,𝑧[𝜉𝑘(𝑆 , 𝑧, 𝑖,)] is bounded
by 𝛾 by Lemma 20. We have that

E𝑆 ,𝑧[𝛥𝑇+1(𝑆 , 𝑧, 𝑖)]

≤
𝑇
∑

𝑡=𝑡0

exp(2𝑐 𝛾(1 − 1
𝑛
)

𝑇
∑

𝑘=𝑡+1

1
𝑘
)( 2𝑐 𝐿
𝑛𝑡

+
𝑐 𝜂
𝑡
)

≤
𝑇
∑

𝑡=𝑡0

exp(2𝑐 𝛾(1 − 1
𝑛
) ln 𝑇

𝑡
)( 2𝑐 𝐿
𝑛𝑡

+
𝑐 𝜂
𝑡
)

≤
𝑇
∑

𝑡=𝑡0

exp(2𝑐 𝛾 ln 𝑇
𝑡
)( 2𝑐 𝐿
𝑛𝑡

+
𝑐 𝜂
𝑡
)

= ( 2𝑐 𝐿
𝑛

+ 𝑐 𝜂)𝑇 2𝑐 𝛾 𝑇
∑

𝑡=𝑡0

𝑡−2𝑐 𝛾−1

≤ (
2𝐿 + 𝜂 𝑛
2𝑛𝛾

)( 𝑇
𝑡0 − 1 )

2𝑐 𝛾 .

Thus,

E𝑆 ,𝑧,[ℎ(𝜃𝑇+1, 𝑧) − ℎ(𝜃′𝑇+1, 𝑧)] ≤ (
2𝐿2 + 𝜂 𝑛𝐿

2𝑛𝛾
)( 𝑇
𝑡0 − 1 )

2𝑐 𝛾

+
𝑡0 − 1
𝑛

E𝑆 ,[(𝜃𝑇 )].
(A.4)

Let 𝑞 = 2𝑐 𝛾 and 𝑟 = E𝑆 ,[(𝜃𝑇+1)]. Setting

𝑡0 = ((2𝐿2 + 𝑛𝜂 𝐿) 𝑐 𝑇
𝑞

𝑟
)

1
1+𝑞 + 1

minimizes Eq. (A.4) and we have

𝜀(, 𝜃1) ≤
1 + 1∕𝑞

𝑛
(2𝑐 𝐿2 + 𝑛𝑐 𝜂 𝐿)

1
1+𝑞 (𝑇 𝑟)

𝑞
1+𝑞 . □

A.5. Proof of Theorem 13

Proof. Let 𝛥𝑡(𝑆 , 𝑧, 𝑖) = E[𝛿𝑡(𝑆 , 𝑧, 𝑖,)|𝛿𝑡0 (𝑆 , 𝑧, 𝑖,) = 0]. By Lemma 17,
∀𝑡0 ∈ [𝑛 + 1],
E𝑆 ,𝑧,[ℎ(𝜃𝑇+1, 𝑧) − ℎ(𝜃′𝑇+1, 𝑧)] ≤ 𝐿E𝑆 ,𝑧[𝛥𝑇+1(𝑆 , 𝑧, 𝑖)]

𝑡0 − 1

+

𝑛
E𝑆 ,[(𝜃𝑇+1)].

11 
When 𝜋(𝑡) = 𝑖 with probability 1
𝑛 , we have

‖(𝜃𝑡) − (𝜃′𝑡 )‖ ≤ 𝛿𝑡(𝑆 , 𝑧, 𝑖,) + 2𝛼𝑡𝐿.
When 𝜋(𝑡) ≠ 𝑖 with probability 1 − 1

𝑛 , we have

‖(𝜃𝑡) − (𝜃′𝑡 )‖ ≤ (1 + 𝛼𝑡𝛽)𝛿𝑡(𝑆 , 𝑧, 𝑖,) + 𝛼𝑡𝜂 ,
by the second statement in Lemma 16. We have

𝛥𝑡+1(𝑆 , 𝑧, 𝑖)
≤1
𝑛
(𝛥𝑡(𝑆 , 𝑧, 𝑖) + 2𝛼𝑡𝐿) + (1 − 1

𝑛
)((1 + 𝛼𝑡𝛽)𝛥𝑡(𝑆 , 𝑧, 𝑖) + 𝛼𝑡𝜂)

(1 + (1 − 1
𝑛
)𝛼𝑡𝛽)𝛥𝑡(𝑆 , 𝑧, 𝑖) + 2𝛼𝑡𝐿 + (𝑛 − 1)𝛼𝑡𝜂

𝑛

≤ exp((1 − 1
𝑛
)𝛼𝑡𝛽)𝛥𝑡(𝑆 , 𝑧, 𝑖) + 2𝛼𝑡𝐿

𝑛
+ 𝛼𝑡𝜂 .

Let 𝛼𝑡 =
𝑐
𝑡 with 𝑐 ≤ 1

𝛽 . It follows that

𝛥𝑇+1(𝑆 , 𝑧, 𝑖) ≤
𝑇
∑

𝑡=𝑡0

(
𝑇
∏

𝑘=𝑡+1
exp

((𝑛 − 1)𝑐 𝛽)
𝑛𝑘

)( 2𝑐 𝐿
𝑛𝑡

+
𝑐 𝜂
𝑡
)

=
𝑇
∑

𝑡=𝑡0

exp(
(𝑛 − 1)𝑐

𝑛

𝑇
∑

𝑘=𝑡+1

𝛽
𝑘
)( 2𝑐 𝐿
𝑛𝑡

+
𝑐 𝜂
𝑡
)

≤
𝑇
∑

𝑡=𝑡0

exp(
(𝑛 − 1)𝑐 𝛽

𝑛
ln 𝑇
𝑡
)( 2𝑐 𝐿
𝑛𝑡

+
𝑐 𝜂
𝑡
)

≤
𝑇
∑

𝑡=𝑡0

exp(2𝑐 𝛽 ln 𝑇
𝑡
)( 2𝑐 𝐿
𝑛𝑡

+
𝑐 𝜂
𝑡
)

= ( 2𝑐 𝐿
𝑛

+ 𝑐 𝜂)𝑇 2𝑐 𝛽 𝑇
∑

𝑡=𝑡0

𝑡−2𝑐 𝛽−1

≤ (
2𝐿 + 𝜂 𝑛
2𝑛𝛽

)( 𝑇
𝑡0 − 1 )

2𝑐 𝛽 .

Let 𝑞 = 2𝑐 𝛽 and 𝑟 = E𝑆 ,[(𝜃𝑇+1)]. Setting

𝑡0 = ((2𝐿2 + 𝑛𝜂 𝐿) 𝑐 𝑇
𝑞

𝑟
)

1
1+𝑞 + 1,

we have

𝜀(, 𝜃1) ≤
1 + 1∕𝑞

𝑛
(2𝑐 𝐿2 + 𝑛𝑐 𝜂 𝐿)

1
1+𝑞 (𝑇 𝑟)

𝑞
1+𝑞 . □

Appendix B. Discussions of uniform stability-based counterparts

Uniform stability analysis employs the following notion:

Definition 22 (Uniform Stability). A randomized algorithm  is 𝜀-
uniformly stable if for all 𝑆 , 𝑆′ ∈ D𝑛 such that 𝑆 and 𝑆′ differ in at
most one element, we have

sup
𝑧∈D

E[ℎ((𝑆), 𝑧) − ℎ((𝑆′), 𝑧)] ≤ 𝜀. (B.1)

Thus, uniform stability bounds the expected difference between the
osses of algorithm outputs on two adjacent training sets. The uniform
tability is distribution-free since 𝑆 and 𝑆′ are independent of . A

generalization bound was given as follows.

Theorem 23 (Hardt et al., 2016). If  is 𝜀-uniformly stable, then the
robust generalization gap of  is bounded by 𝜀:
|E𝑆 ,[((𝑆)) −𝑆 ((𝑆))]| ≤ 𝜀.

The following theorem gives an upper bound of the robust general-
ization gap.

Theorem 24 (Xiao et al., 2022). Let ℎ(𝜃 , 𝑧) be convex, 𝐿-Lipschitz and
𝜂-approximately 𝛽-gradient Lipschitz in 𝜃. Let the step sizes 𝛼 = 𝛼 ≤ 1 .
𝑡 𝛽
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Then the generalization gap of algorithm  using the training set of size 𝑛
fter 𝑇 steps of the SGD update has an upper bound
𝜀gen = (𝜂 + 2𝐿

𝑛
)𝛼 𝑇 𝐿,

where 𝜂 is a parameter proportional to the adversarial training budget 𝜖 and
the approximate gradient Lipschitz condition will be defined in Lemma 8.

B.1. Data poisoning

A poisoned algorithm  uses the gradient on a poisoned datum
∇ℎ(𝜃 ,(𝑧)) instead of ∇ℎ(𝜃 , 𝑧) which may result in totally different
update trajectories dependent on  . Nevertheless, the expansion prop-
erties of 

are not affected by the attack  at all. Indeed, due
o


(𝜃 , 𝑧, 𝛼) = (𝜃 ,(𝑧), 𝛼),

if  is 𝜄-approximately 𝜅-expansive, the poisoned update rule 
s 𝜄-approximately 𝜅-expansive as well. Therefore, uniform stability
nalysis provides the same upper bound of ‖ (𝑆) −  (𝑆′)‖. Thus,

Theorem 24 implies the following proposition.

Proposition 25. The poisoned generalization gap 𝜀 based on the uniform
stability analysis remains unchanged, i.e.
𝜀 = (𝜂 + 2𝐿

𝑛
)𝛼 𝑇 𝐿.

Similar consequences also hold for the results in Hardt et al. (2016),
Xing et al. (2021), and the results for non-convex and strongly-convex
cases in Xiao et al. (2022).

Proof. By Theorem 23 and the Lipschitz assumption, it suffices to prove

E𝑃
[‖𝑃 (𝑆) −𝑃 (𝑆′)‖] ≤ (𝜂 + 2𝐿

𝑛
)𝛼 𝑇 . (B.2)

Assume that the trajectories of 𝑃 (𝑆) and 𝑃 (𝑆′) are 𝜃1,… , 𝜃𝑇 and
𝜃′1,… , 𝜃′𝑇 respectively. Let 𝛿𝑡 = ‖𝜃𝑡 − 𝜃′𝑡‖. By the third statement in
Lemma 16, the update rule  is 𝛼 𝜂-approximately 1-expansive. Since

e have

𝑃
(𝜃 , 𝑧, 𝛼) = (𝜃 , 𝑃 (𝑧), 𝛼),

the update rule 𝑃
is 𝛼 𝜂-approximately 1-expansive as well due to

Definition 15. Note that at step 𝑡 the algorithm 𝑃 selects the example
that 𝑆 and 𝑆′ differ with probability 1

𝑛 . In this case,

𝛿𝑡+1 ≤ 𝛿𝑡 + 2𝛼 𝐿.
In the other case,

𝛿𝑡+1 ≤ 𝛿𝑡 + 𝛼 𝜂 .
It follows that

E𝑃
[𝛿𝑡+1] ≤

1
𝑛
(E𝑃

[𝛿𝑡] + 2𝛼 𝐿) + (1 − 1
𝑛
)(E𝑃

[𝛿𝑡] + 𝛼 𝜂)

≤ E𝑃
[𝛿𝑡] + (𝜂 + 2𝐿

𝑛
)𝛼 .

Therefore, Eq. (B.2) follows. □

Appendix C. Experiments setups

We conduct experiments by adversarially training a ResNet-18 (He
et al., 2016) on common datasets and their poisoned counterparts under
different data poisoning attacks.

C.1. Data augmentation

For CIFAR-10 and CIFAR-100, we perform RandomHorizontalFlip,
andomCrop(32, 4) on the training set and Normalize on both the

training set and test set. For Tiny-ImageNet, we perform RandomHor-
izontalFlip on the training set and Normalize on both the training set
and test set. For SVHN, we perform only Normalize on both the training

set and test set.
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C.2. Adversarial training

We use the cross entropy loss as the original loss 𝑙. We adopt the
0-step projection gradient descent (PGD-10) (Madry et al., 2017) to

generate adversarial examples. The adversarial budget is 𝜖 and the
tep size is 𝜖∕4 in 𝐿∞-norm. We report robust accuracy as the ratio of
orrectly classified adversarial examples generated by PGD-10, and the
obust generalization gap as the gap between robust training accuracy
nd robust test accuracy.

We use the SGD optimizer in PyTorch and set the momentum and
weight decay to be 0.9 and 5 × 10−4 respectively. For all four datasets,
the batch sizes of data loaders are set to 128. In Figs. 1 and 2, to
illustrate the robust overfitting phenomenon, we run SGD with an
initial learning rate of 0.1 that decays by a factor of 0.1 at the 100
and 150 epochs. In other experiments, we adopt the constant learning
rate of 0.01. We run AT for 50 epochs on SVHN and for 200 epochs on
CIFAR-10, CIFAR-100 and Tiny-ImageNet.

C.3. Poisoning details

We introduce different poisoning attacks used in our experiments
on CIFAR-10 and CIFAR-100. In order to simulate the poisoned dis-
tribution #, we generate the poisoned training set and test set
simultaneously.

EM (error minimizing noise). Huang et al. (2021) proposed a min-
in bi-level optimization to generate error-minimizing noises on the

raining set. Such noises prevent deep learning models from learning
nformation about the clean distribution from the poisoned training
ata. Formally:

min
𝜃

1
𝑛

𝑛
∑

𝑖=1
min

‖𝛿𝑖‖≤𝜖′
𝑙(𝑓𝜃(𝑥𝑖 + 𝛿𝑖), 𝑦𝑖),

where 𝜖′ is the poisoning budget. The trained noise generator 𝑓𝜃
generates an unlearnable example (𝑥𝑒𝑚, 𝑦) with respect to the clean
datum (𝑥, 𝑦) such that 𝑥𝑒𝑚 = 𝑥 + ar g min

‖𝛿𝑖‖≤𝜖′ 𝑙(𝑓𝜃(𝑥 + 𝛿), 𝑦). PGD-10 is
employed for solving the minimization problem. It is worth noting that
in our experiments, we combine the training set and test set together
to train noise generator 𝑓𝜃 in order to obtain the poisoned training set
and poisoned test set coming from the same shifted distribution.

REM (robust error minimizing noise). Fu et al. (2021) further pro-
osed robust minimizing noise in order to protect data from adversarial
raining, which also can degrade the test robustness. Formally:

min
𝜃

1
𝑛

𝑛
∑

𝑖=1
min

‖𝛿𝑢𝑖 ‖≤𝜖
′
max

‖𝛿𝑎𝑖 ‖≤𝜌𝑎
𝑙(𝑓𝜃(𝑥 + 𝛿𝑢𝑖 + 𝛿

𝑎
𝑖 ), 𝑦),

where 𝜖′ and 𝜌𝑎 are poisoning budget and adversarial perturbation
budget. 𝜌𝑎 controls the protection level against adversarial training. For
REM, we set 𝜌𝑎 = 2∕255. The trained noise generator 𝑓𝜃 generates a
robust unlearnable example (𝑥𝑟𝑒𝑚, 𝑦) with respect to the clean datum
(𝑥, 𝑦) such that 𝑥𝑟𝑒𝑚 = 𝑥 + ar g min

‖𝛿𝑢𝑖 ‖≤𝜖
′ max

‖𝛿𝑎𝑖 ‖≤𝜌𝑎
𝑙(𝑓𝜃(𝑥 + 𝛿𝑢 + 𝛿𝑎), 𝑦).

t is worth noting that in our experiments, we combine the training
et and test set together to train noise generator 𝑓𝜃 in order to obtain
he poisoned training set and poisoned test set coming from the same
hifted distribution.

Following Fu et al. (2021), the source model is trained with SGD for
5000 iterations, with batch size of 128, momentum of 0.9, weight decay
of 5 × 10−4, an initial learning rate of 0.1, and a learning rate scheduler
that decays the learning rate by a factor of 0.1 every 2000 iterations.
The inner minimization and maximization use PGD-10 to approximate.
For EOT, the data transformation 𝑇 is set as the data augmentation
of the corresponding dataset, and the repeated sampling number for
expectation estimation is set as 5.

ADV (adversarial perturbation). Tao et al. (2021) and Fowl et al.
(2021) both proposed that adding adversarial perturbations to the
training data is effective to degrade the test performance of a naturally
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trained model. In our experiments, we follow their class-targeted ad-
ersarial attack. Let 𝐾 be the number of data classes. We choose fixed

target permutation 𝑡 = (𝑦+ 1) mod 𝐾 according to source label 𝑦. Then
add a small adversarial perturbation to 𝑥 in order to force a naturally
trained model to classify it as the wrong label 𝑡. Formally:

𝑥𝑎𝑑 𝑣 = ar g min
‖𝛿‖≤𝜖′

𝑙(𝑓𝜃(𝑥 + 𝛿), 𝑡),

where 𝑓𝜃 is a classifier naturally trained on the combination of the
training set and test set, and 𝜖′ is the poisoning budget. For the
minimization problem, we adopt PGD-100 which is enough to generate
strong poisons.

HYP (hypocritical perturbation). Tao et al. (2022) proposed
adding hypocritical perturbation on training data to degrade the test
obustness of an adversarially trained model. Before generating the

poisons, a crafting model is adversarially trained with a crafting budget
𝜖 = 2∕255 for 10 epochs. Then generate hypocritical noises within the
perturbation budget 𝜖′ which can mislead the learner by reinforcing the
non-robust features. Formally:

𝑥ℎ𝑦𝑝 = ar g min
‖𝛿‖≤𝜖′

𝑙(𝑓𝜃(𝑥 + 𝛿), 𝑦),

where 𝑓𝜃 is the crafting model. Like in ADV, we choose PGD-100 to
solve the minimization problem. It is worth mentioning that we trained
the crafting model on the combination of the training set and test set.

RAN (class-wise random perturbation).
In our experiment, we generate a random perturbation 𝑝𝑦 ∈ 𝐵(0, 𝜖′)

for each label 𝑦 according to the uniform distribution. Then we have
poisoned pairs (𝑥 + 𝑝𝑦, 𝑦). It is important that we choose the same
lass-wise random perturbation for the training set and test set.

Data availability

Data will be made available on request.
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